BCIT Logo

Module 1: Sinusoidal alternating waveforms

Sinusoidal Waveforms

Set the variables to obtain \(v(t)=3+10sin(10\pi t+30^\circ ) \) and observe the characteristics of the waveform.

$$v(t)=E+V_msin(2\pi ft+\theta_v)$$
V
−12 12
V
0 12
Hz
0 100
degrees
−180 180
0.000

Click on the toggle switch of the DMM to switch between DC and RMS readings.

Use the knobs to adjust the time per division and volts per division.

Average Value:
\(V_{dc}=\frac{1}{T}\int_0^T{v(t)dt}=\frac{1}{T}\int_0^T{[E+V_msin(2\pi ft+\theta_v)]dt}=E=\)?
Effective Value:
\(V_{rms}=\sqrt{V_{dc}^2+V_{ac(rms)}^2}=\sqrt{E^2+(\frac{V_m}{\sqrt{2}})^2}=\sqrt{E^2+\frac{V_m^2}{2}}=\)?
Peak Amplitude:
\(V_m=\)?
Peak Value:
\(V_p=V_m+E=\)?
Peak-to-peak Value:
\(V_{pp}=2V_m=\)?
Instantaneous Voltage at   \(t_a=\)ms:  \(v(t_a)=E+V_msin(2\pi ft_a+\theta_v)=\)?