BCIT Logo

Module 6: Power

Power Triangle

Set the peak amplitude, phase, and frequency of the voltage source and the values of the RLC series circuit elements.

$$v(t)=V_msin(2\pi ft+\theta_v)$$

\(V_m=\) V 0 12
\(f=\) Hz 0 100
\(\theta_v =\text{ } \) \(^\circ\) −180 180
$$ R,X_L,X_C $$

\(R=\) Ω 0 100
\(X_L=\) Ω 0 100
\(X_C=\) Ω 0 100
\(P\)
\(Q\)
\(S\)
kW
Active Power
kVAR
Reactive Power
kVA
Apparent
Power
Resistor Impedance:
\( Z_R = R = \)?Ω
Inductor Impedance:
\( Z_L = jX_L = \)?Ω
Capacitor Impedance:
\( Z_C = -jX_C = \)?Ω
Total Impedance:
\( Z_T = Z_R+Z_L+Z_C = \)?Ω
Input Voltage:
\( V = \frac{V_m}{\sqrt{2}}\angle \theta_v = \) ? V
\( V_{rms} = \|V\| = \frac{V_m}{\sqrt{2}} = \) ? V
Current:
\( I = \frac{V}{Z_T} = \) ? A
\( I_{rms} = \|I\| = \) ? A
\( i(t) = \) ? A
Apparent Power:
\( S = VI^* = \)?VA
Average (or Active) Power:
\( P = Re\{S\} = V_{rms}I_{rms}cos(\theta_v-\theta_i) = \)?W
Reactive Power:
\( Q = Im\{S\} = V_{rms}I_{rms}sin(\theta_v-\theta_i) = \)?VAR
Power Factor:
\( F_P = cos(\theta_v-\theta_i) = \)?