BCIT Logo

Module 3: Series and parallel AC circuits

Series AC Circuits

RLC series circuit

Set the peak amplitude, phase and frequency of the voltage source:

$$v(t)=V_msin(2\pi ft+\theta_v)$$

\(V_m=\) V 0 12
\(f=\) Hz 0 100
\(\theta_v= \text{ }\) \(^\circ\) −180 180
$$ R,X_L,X_C $$

\(R=\) Ω 0 100
\(X_L=\) Ω 0 100
\(X_C=\) Ω 0 100
Impedance diagram
Phasor diagram
Resistor Impedance:
\( Z_R = R = \)?Ω
Inductor Impedance:
\( Z_L = jX_L = j2\pi fL = \)?Ω
Capacitor Impedance:
\( Z_C = -jX_C = \frac{-j}{2\pi fC} = \)?Ω
Total Impedance:
\( Z_T = Z_R+Z_L+Z_C = \)?Ω
Input Voltage:
\( V = \frac{V_m}{\sqrt{2}}\angle \theta_v = \) ? V
\( V_{rms} = \|V\| = \frac{V_m}{\sqrt{2}} = \) ? V
Resistor Voltage:
\( V_R = \frac{Z_R}{Z_T}V = \) ? V
\( v_R(t) = \) ? V
Inductor Voltage:
\( V_L = \frac{Z_L}{Z_T}V = \) ? V
\( v_L(t) = \) ? V
Capacitor Voltage:
\( V_C = \frac{Z_C}{Z_T}V = \) ? V
\( v_C(t) = \) ? V
Current:
\( I = \frac{V}{Z_T} = \) ? A
\( I_{rms} = \|I\| = \) ? A
\( i(t) = \) ? A
Active Power:
\( P = V_{rms}I_{rms}cos(\theta_v-\theta_i) = \)?W